Vrij programmeerbare besturing (PLC)

STARTUP HANDBOEK

MELSEC FX1S/FX1N

HET FX1S/FX1N STARTUP HANDBOEK

Deze leidraad geeft u een kort overzicht om snel door de handleiding te lopen.

Wanneer u voor het eerst met het thema PLC in aanraking komt en nog niet weet welke richting voor u van toepassing is, begint u met hoofdstuk 1.

Als u al weet wat een PLC is of u heeft reeds een MELSEC FX1S/FX1N en verder informatie wil hebben, begint u met hoofdstuk 2.

Meer over de programmering in het algemeen en de MELSEC FX1S/FX1N in het bijzonder vindt u in hoofdstuk 3. Hier vindt u ook informatie om de MELSOFT programmeersoftware te installeren en toe te passen.

Programmavoorbeelden die u het vermogen geven uw project te realiseren en bij de uitbreiding van uw programmeerkennis helpen, vindt u in hoofdstuk 4.

Het laatste hoofdstuk geeft u verdere perspectieven en geeft u tips voor de verdere uitbreiding voor uw systeem.

Wij begeleiden u door dit handboek en willen u graag helpen MELSEC FX1S en FX1N te begrijpen en de toepassing en programmering zo makkelijk mogelijk voor u te maken.

Aanvullende service aanbiedingen

Actuele informatie over update, veranderingen, vernieuwingen en ondersteuning bij technische vragen vindt u op de website van MITSUBISHI ELECTRIC (<u>www.mitsubishi-</u> <u>automation.de</u>). In het productoverzicht op de homepage treft u documentatie aan over de PLC's van Mitsubishi, zoals de meest actuele versie van verscheidene technische catalogi om te downloaden.

Alle data wordt dagelijks geactualiseerd en zijn op het ogenblik zowel in het Duits als in het Engels beschikbaar.

Hoe met deze handleiding om te gaan

Deze handleiding wordt op grond van het constant groeiende productaanbod, technische veranderingen en nieuwe of gewijzigde prestaties voortdurend up to date gehouden. De in deze handleiding geschreven tekst, afbeeldingen en diagrammen dienen uitsluitend voor toelichting en hulp van projecten en programmeren van de PLC's van de MELSEC FX1S en FX1N serie. Om de PLC's inclusief toebehoren te installeren, in bedrijf te stellen en te handhaven zijn de geleverde handboeken relevant. De gegevens van deze documentatie moeten in acht worden genomen tijdens het in bedrijf stellen van deze apparatuur.

Indien u tijdens het lezen van deze handleiding verdere vragen heeft, kunt u te allen tijde contact opnemen met Koning & Hartman BV te Amsterdam of één van de verkooppartners (zie omslag).

MITSUBISHI ELECTRIC EUROPE B.V. 04/2001

INHOUDSOPGAVE

1. BASIS		5
VAN DE P	ROGRAMMEERBARE BESTURINGSEENHEID	5
1.1 1.2 1.3 1.4 1.5 2. OPBOU	INLEIDING DEFINITIE VAN EEN PLC VAN IDEE TOT AUTOMATISERINGSOPLOSSING DE MELSEC FX1S/FX1N FAMILIE IN EEN OOGOP SLAG TECHNISCHE DETAILS VEREENVOUDIGT W VAN DE MELSEC FX1S/FX1N BESTUR INGEN	
2.1 2.2	OVERZICHT VAN DE BASISEENHEID DE JUISTE INSTALLATIE	
SOFTWAI	RE	
3.1 3.2 3.3 3.4	PROGRAMMAVERWERKING IN DE PLC BASISINSTRUCTIES PROGRAMMEERTIPS PROGRAMMERING MET MELSOFT PROGRAMMEER SOFTWARE	22 24 34 38
4. VOORB	EELDEN UIT DE PRAKTIJK	41
4.1 4.2 4.3 4.4	ALARMINSTALLATIE Besturing van een roldeur Regeling van gelijkstroommotoren Sproeiinstallatie	
5. UITBRE	EIDINGSMOGELIJKHEDEN	55
5.1 5.2 5.3 5.4	UITBREIDINGSMODULE EN EENHEDEN Communicatie mogelijkheden A anwijzing en instelling via HMI Positionering met de FX1S en FX1N	
NOT	ITIES	62
Trei	FWOORDENLIJST	63

Wat u over Mitsubishi Electric Europe B.V. moet weten

120 jaar geleden werd door de familie Iwasaki een bedrijf opgezet, de naam werd van het familiewapen afgeleid: Mitsubishi staat voor "drie diamanten".

Mitsubishi groeide in de loop van de jaren uit tot een groot familiebedrijf, wat op vele terreinen actief werd.

MELSEC FX1S en FX1N – de PLC generatie van de toekomst

Voor ieder verzoek de juiste PLC. Als permanente ontwikkeling van de MELSEC FX-familie presenteert Mitsubishi Electric de nieuwste FX1S en FX1N serie en volgt hiermee de zich altijd sneller ontwikkelende automatiseringsmarkt op. Deze nieuwe PLC's zijn niet alleen kleiner, maar ook sterker qua prestatie geworden.

Mitsubishi Electric biedt met de FX1S en FX1N serie compact PLC's aan, die door de kleine, compacte bouw veel ruimte bespaart. Bovendien bent u nog wel degelijk flexibeler en goedkoper uit in vergelijking met conventionele oplossingen met relais en schuiven. Met deze nieuwe PLC's biedt Mitsubishi u de optimale oplossing om kosten te besparen en de prestatie gerichtheid te verhogen in de meest compacte vorm.

Naast deze vele voordelen is het (bij de MELSEC FXfamilie) bijzondere doel op eenvoudige manier gemakkelijk te programmeren van de besturing. Zo is de startop tijd tot een minimum beperkt en daardoor zijn de kosten gereduceerd.

De afgestemde logische basis instructieset van FX1S en FX1N en een veelvoud van speciale functies zijn identiek met de andere besturingen van de MELSEC FX-familie. De opwaarts compatibiliteit is hiermee voor de gehele FX serie gewaarborgd.

MELSEC FX: De juiste investering voor de toekomst!

1. BASIS

van de PROGRAMMEERBARE BESTURINGSEENHEID

1.1 Inleiding

1.1.1 Welke voordelen biedt een PLC?

Op het gebied van de automatiseringstechniek zijn PLC's als relais, programmeerbare besturingen –PLC genaamd– en bescherming vandaag de dag niet meer weg te denken.

De voordelen liggen daarbij voor de hand:

- Economisch;
- Plaatsbesparend;
- Prestatie;
- Flexibiliteit.

Plaatsbesparend Plaatsbesparend, klein en compact. Een PLC vervangt meer dan 100 hulprelais.

Economisch

Kostenbesparend over de gehele linie b.v. door tijdbesparing bij de ontwikkeling van de applicatie en geringe hardware kosten.

Prestatie Veelzijdige inzet mogelijkheden in een compleet systeem.

Flexibiliteit

Een apparaat voor vele toepassingen. Bij verandering in de applicatie, verandert als gevolg alleen het software programma.

1.1.2 Wat is er zo speciaal bij de MELSEC FX1S/FX1N serie?

De MELSEC FX1S/FX1N is de juiste en kostenefficiënte instap in de wereld van de PLC. Ze worden dan ook op de eisen van de toepassingen ontwikkeld. Daarbij wordt niets aan het toeval overgelaten. Enkele voordelen in een oogopslag.

> Geïntegreerde positioneer regelingen voor aansturen van servo en stappen motoren en uitsturingen van puls gemoduleerde signalen.

Veelzijdige communicatie mogelijkheden door geïntegreerde seriële com-poorten.

> Extra instel-, bewakings- en aanwijsmogelijkheden via een groot aantal bedieningspanelen (Human-Machine-Interface).

Omvangrijke software mogelijkheden via de gebruikersvriendelijke Windows-systemen.

1.2 Definitie van een PLC

1.2.1 Wat is nu precies een Programmable Logic Controller?

Volgens DIN 19226 wordt een besturing omschreven als een systeem, waarbij een of meerdere ingangen in een systeem opgenomen en verwerkt worden, verscheidene uitgangen worden beïnvloed. Besturingen werken volgens het principe van informatie verwerking, waarbij data wordt ingelezen, verwerkt wordt en deze verwerking verder wordt uitgestuurd. Dus:

• Een ingang verwerking;

- Verwerkingsproces;
- Een uitgang verwerking.

Ingang verwerking

De ingang heeft de opdracht om stuursignalen aan het verwerkingsproces over te dragen. Typische ingangssignalen zijn schakelaars en sensoren.

De signalen van deze ingangen ontstaan in het besturingsproces en worden dan als logische waarde aan de ingang door gegeven. Die geeft het weer door aan het verwerkingsproces in de juiste vorm na een galvanische scheiding.

Verwerkingsproces

Het van de ingang verkregen gescheiden signalen worden in het verwerkingsproces middels een opgeslagen programma verwerkt en logisch verknoopt. Het verwerkingsproces beschikt over een programmageheugen, die vrij programmeerbaar is. Een verandering in het verwerkingsproces wordt mogelijk gemaakt door verandering of opnieuw programmeren van het opgeslagen programma.

Uitgang verwerking

Het resultaat van het programma uit het verwerkingsproces kan de uitgangssignalen van de besturing de hefboom of actuatoren fysiek beïnvloeden.

De door het verwerkingsproces geleverde signalen worden voor de uitsturing van de uitgangen voorbereid, zodat de spanning en de voorwaarde van het verwerkingsproces en uitgangslag gescheiden zijn. Het resultaat hiervan is dat de uitgang een signaal aanpassing door een zogenaamde uitgang communicatie. De galvanische scheiding met een optocoupler versterkt een signaal en neemt energie op.

Toelichting:

Bij een **PLC** bevindt zich het besturingsprogramma in een geheugen. Verandering in het besturingsprogramma volgt uit een verandering in de geprogrammeerde data.

Een **galvanische scheiding** wordt gemaakt m.b.v. opto-couplers. De opto-coupler verhindert de invloeden van storingen, deze signalen kunnen de werking dan niet negatief beïnvloeden. Er is geen elektrische verbinding.

Opto-couplers zijn halfgeleiders met een galvanische scheiding, signaal wordt m.b.v. licht overgebracht.

Op de uitgang van een PLC kunnen naast actuatoren ook schakelposities aangesloten worden. **Schakelposities** zijn bijvoorbeeld vermogensschuiven, magneetventielen en vermogenstrappen.

Als **actuatoren** bewerkt men bijv. meldinrichtingen, motoren, pompen en warmteinstallatie.

Communicatie tussen twee functiegroepen schakelelementen, dat een rimpelloze data en signaaltransfer samenstelt.

1.2.2 Hoe verwerkt mijn besturing de signalen?

De PLC FX-familie werkt volgens het principe van informatieverwerking van de ingangen.

In het begin onderscheiden de volgende twee ingangssignalen zich:

Binaire ingangssignaal

Men onderscheidt principieel twee signaal toestanden:

- Aan en uit;
- 1 en 0.

Afhankelijk van de binaire ingangssignalen wordt de verdeling gemaakt van de besturing schakelvolgorde. Binaire signalen kunnen door schakelcontacten (druktoetsen, relais, bescherming, enz.) contactloos met halfgeleiders (transistoren) en met andere PLC's gerealiseerd worden.

Analoog ingangssignaal

Een ingangssignaal kan als analoog signaal met een continu veranderde waarde optreden. Analoge signalen kunnen, bijvoorbeeld van een potentiometer, in vorm een veranderende elektrische spanning krijgen. Het ingangssignaal wordt beïnvloedt door een instelschakelaar en de versterker versterkt de uitgaande analoge besturingen zo dat de uitgangssignaal analoog de ingangssignaal verandert. Voorkomende analoge signalen zijn:

- -10...+10 V;
- 0...20 mA;
- 4...20 mA.

1.2.3 Hoe worden de signalen verwerkt?

Als eerste reeds beschreven, werden de ingangssignalen in de werking van de PLC door middel van opslaan van het programma verwerkt. Het programma, ook wel de software, gebruikt hier zogenaamde software adressen. Zo kan iedere inof uitgang als een interne functie werken, bijv. tijdschakelaar, counters en merkers (hulpschakelaars). Om wat duideliik te identificeren? Dit software adres bestaat uit een operand (type aanduiding) en het adres zelf. In het besturing programma kunnen deze adressen dan gericht opgevraagd of aangesproken worden en met elkaar verbonden worden. Meer hierover vindt u in hoofdstuk 3.

Digitale Ingangen Bijv. X0...X7, X10...X17

Digitale Uitgangen Bijv. Y0...Y7, Y10...Y17

1.3.1 Assortiment

1. Systeem assortiment

Mitsubishi Electric biedt een breed assortiment van mogelijkheden in het bereik van de PLC. Van de kleinste PLC besturing FX1S met compacte en modulaire besturing systeem van de FX1N serie tot de computer gestuurde oplossing in de fabricage automatisering.

2. Handleiding

Voordat u de MELSEC PLC in gebruik neemt, dient u het bijbehorende handboek zorgvuldig door te lezen. Let u op alle aanwijzingen, adviezen en veiligheidsmaatregelen.

3. Monteren

Alle FX1S en FX1N PLC's zijn gebruiksklaar en hebben bovendien een zeer geringe ruimte nodig. Door de standaard DIN-rail montage wordt de montagetijd aanzienlijk gereduceerd. De inbouw en het aansluiten van de PLC moet overeenkomen met een volgens voorschrift beschreven schakelkast.

4. Programmeren

Alle MELSEC FX1S en FX1N PLC's bezitten een afgestemde besturing en compacte ordervoorraad. U wordt in een, voor ieder, gemakkelijk aan te leren programmeertaal begeleidt.

1.4 De MELSEC FX1S/FX1N familie in een oogopslag

1.4.1 Voorstellen van de FX-familie

De compacte kleine besturingen van de MELSEC FX1S en FX1N serie bieden u krachtige oplossingen voor kleine en middelgrote besturingen en positioneert applicaties van 10 t/m 60 in- en uitgangen in de industrieën, handwerken en huistechnieken.

De FX1S is een afzonderlijk apparaat, laat zich klein en compact als bescherming monteren.

Met zijn veelzijdigheid helpt het u plaats, tijd en kosten te sparen.

Wie uitwendige besturingseenheden wil en bovendien veel bijzondere functies nodig heeft, bijvoorbeeld Analoog-Digitaal, Digitaal-Analoog of een netwerk module, is de FX1N de juiste keuze voor modulaire uitbreidingen.

Beide besturingstypen zijn de bestanddelen van de grootste MELSEC FXfamilie, onder andere volledig compact zijn.

Voedingsspani	ning	FX1S	I/O	FX1N	I/O
100-240 VAC	Relais-	FX1S-10MR-ES/UL	6/4.	FX1N-14MR-ES/UL	8/6.
	uitgang	FX1S-14MR-ES/UL	8/6.	FX1N-24MR-ES/UL	14 / 10.
		FX1S-20MR-ES/UL	12/8.	FX1N-40MR-ES/UL	24/16.
		FX1S-30MR-ES/UL	16/14.	FX1N-60MR-ES/UL	36/24
24 VDC (FX1S)	Relais-	FX1S-10MR-DS	6/4.	FX1N-14MR-DS	8/6.
12-24 VDC (FX1N)	uitgang	FX1S-14MR-DS	8/6.	FX1N-24MR-DS	14 / 10.
		FX1S-20MR-DS	12/8.	FX1N-40MR-DS	24/16.
		FX1S-30MR-DS	16/14.	FX1N-60MR-DS	36/24
24 VDC (FX1S)	Transistor-	FX1S-10MT-DSS	6/4.	FX1N-14MT-DSS	8/6.
12-24 VDC (FX1N)	uitgang	FX1S-14MT-DSS	8/6.	FX1N-24MT-DSS	14 / 10.
		FX1S-20MT-DSS	12/8.	FX1N-40MT-DSS	24/16.
		FX1S-30MT-DSS	16/14.	FX1N-60MT-DSS	36/24

FX □□ 14 M R E S UL Certificering Image: Model variaties Image: Model varia

1.4.2 Herken uw PLC aan de hand van de type aanduiding

Som van het aantal I/O's Serie-aanduiding (FX1S/FX1N)

1.5.1 Ingangsspecificatie

Met de volgende datatabel wordt u de betekenis van de ingangsdata uitgelegd en verder in detail besproken.

FX1S/FX1N	INGANGSDATA	
INGANGSCIRCUIT	contactloze ingangen	
STATUS INDICATIE	met LED's	
GALVANISCHE SCHEIDING	Opto-coupler	ŝ
INGANGSSPANNING	24 V (+10%, -15%)	
INGANGSSTROOM	5 - 7 mA	
MAX. SCHAKELBELASTING	max. 15 A voor 0,1 ms	
Ingangsimpedantie	3,3 k	
INSCHAKELSTROOM	max. 4,5 mA (X0 - X7); max. 3,5 mA (X10 -	
INGANGSVERTRAGING	10 ms (instelbaar)	

Toelichting

De **ingangscircuit** zijn als contactloze ingangen uitgevoerd. De isolatie van de schakelcircuits van de PLC is gerealiseerd met opto-couplers, die een **galvanische scheiding** mogelijk maakt.

De **status** van de ingang, spanning aanwezig (1) of spanning niet aanwezig (0), wordt met ingebouwde LED's weergegeven.

Alle digitale ingangen gebruiken een schakelspanning, bijv. 24 V DC. Deze schakelspanning kan via een ingebouwde voeding, van de PLC, gebruikt worden. Als de schakelspanning van de ingang lager is dan 24 V DC, is de ingang niet actief (wordt aangeduid met 0). De belastingstroom per ingang noemen we **ingangsstroom**, dit is de stroom die bij inschakeling van een contact op dat moment door een ingangscontact heen gaat.

Om storingen te vermijden, bezitten alle ingangen een instelbare vertrager tot het aanspreken van de ingang (**ingangsvertraging**). Het signaal moet tenminste voor een bepaalde tijd aanwezig zijn, voordat de PLC het signaal verwerkt. Bij alle ingangen is deze tijd (ingangsvertraging) instelbaar tussen 0 en 15 ms, standaard 10 ms.

1.5.2 Uitgangsspecificatie

De betekenis van de uitgangsdata wordt op deze bladzijde in details besproken.

FX1S/FX1N	Relaisuitgang	Transistoruitgang
UITGANGSCIRCUIT	relais	transistor
STATUS INDICATIE	met LED's	met LED's
ISOLATIE	Relais scheiding	Opto-coupler
INSCHAKELSPANNING (max.)	250 VAC; 30 VDC	5 - 30 VDC
UITGANGSSTROOM	2 A per uitgang	0,5 A per uitgang
	8 A per groep	0,8 A per groep
UITGANGSBELASTING	80 VA inductief	12 W inductief
	100 W lamp	0,9 W lamp
INGANGSVERTRAGING	10 ms	0,2 ms

Toelichting

Voor de **uitgangscircuits** kunt u kiezen tussen een relais- of transistoruitgang. De isolatie van het schakelcircuit in de PLC geschiedt door middel van opto-couplers, deze realiseren een **galvanische scheiding** met de stuurstroom circuit.

De **status** van de uitgang, actief of nietactief, wordt met ingebouwde LED's weergegeven.

De **maximale uitgangsstroom** bedraagt bij een relaisuitgang 2 A bij 240 V AC (ohms belast) en bij een transistoruitgang 0,5 A bij 24 V DC (ohms belast). De **maximale** grootte van het aan te sluiten **vermogen** op de uitgang wordt beschreven in de handleiding van de PLC (bijv. een belasting van 100W op een relaisuitgang).

Wanneer u grote belastingen wilt schakelen, moet u een besturing nemen met relaisuitgangen.

Wanneer u wilt beschikken over een snelle reactietijd van de PLC, moet u een PLC nemen met transistoruitgang. De **ingangsvertraging** bij een transistoruitgang is 0,2 ms i.p.v. 10 ms.

1.5.3 Hoe vind ik de juiste PLC

Aan de hand van de volgende tabel kunt u de juiste PLC kiezen. Door het beantwoorden van de volgende vragen krijgt u de juiste PLC toe gewezen (kolom F. van de tabel).

Α.

Wanneer u een economisch onafhankelijk systeem voor de automatisering zoekt, is de FX1S als enige de juiste PLC oplossing. Mocht u een complexere besturing hebben, waarbij bijzondere functies (bijv. Analoog-Digitaal) of moet de PLC in een netwerk geïntegreerd worden (bijv. als Masterslave systeem toe worden gepast), dan is de FX1N de juiste PLC voor u.

LET OP!
FX1S kan NIET uitgebreid
worden met andere
modules.
Bij de FX1N is dit wel
mogelijk.

В.

Hoeveel ingangen moet de PLC hebben om de signalen (afkomstig van schakelaars, druktoetsen en sensoren) te verwerken in het programma.

C.

Hoeveel uitgangen moet de PLC hebben om functies aan te sturen en welke type uitgang moet de PLC hebben, relais of transistor.

D.

Welke voedingsspanning moet de PLC hebben.

Ε.

Welke belasting wordt er op de uitgang aangesloten? Relais uitgang is geschikt voor hoge belastingen en de transistor uitgang is geschikt voor snelle, trigger vrije schakelingen.

A	В.	C.	D.	E		F.
Туре	Aantal ingangen	Aantal uitgangen	Voeding	Uitgang- type	Max. schakel- stroom	PLC-type
	6	4	24 VDC	Relais	2 A.	FX1S-10MR-DS
	6	4	24 VDC	Transistor	0,5 A.	FX1S-10MT-DSS
	6	4	100 - 240 VAC	Relais	2 A.	FX1S-10MR-ES/UL
EN .	8	6	24 VDC	Relais	2 A.	FX1S-14MR-DS
ЩШ	8	6	24 VDC	Transistor	0,5 A.	FX1S-14MT-DSS
NHO NHO	8	6	100 - 240 VAC	Relais	2 A.	FX1S-14MR-ES/UL
MP	12	8	24 VDC	Relais	2 A.	FX1S-20MR-DS
0 S S	12	8	24 VDC	Transistor	0,5 A.	FX1S-20MT-DSS
345	12	8	100 - 240 VAC	Relais	2 A.	FX1S-20MR-ES/UL
-	16	14	24 VDC	Relais	2 A.	FX1S-30MR-DS
	16	14	24 VDC	Transistor	0,5 A.	FX1S-30MT-DSS
	16	14	100 - 240 VAC	Relais	2 A.	FX1S-30MR-ES/UL
	8	6	12 - 24 VDC	Relais	2 A.	FX1N-14MR-DS
	8	6	12 - 24 VDC	Transistor	0,5 A.	FX1N-14MT-DSS
_	8	6	100 - 240 VAC	Relais	2 A.	FX1N-14MR-ES/UL
EV.	14	10	12 - 24 VDC	Relais	2 A.	FX1N-24MR-DS
	14	10	12 - 24 VDC	Transistor	0,5 A.	FX1N-24MT-DSS
NH	14	10	100 - 240 VAC	Relais	2 A.	FX1N-24MR-ES/UL
MP	24	16	12 - 24 VDC	Relais	2 A.	FX1N-40MR-DS
Sis	24	16	12 - 24 VDC	Transistor	0,5 A.	FX1N-40MT-DSS
3A;	24	16	100 - 240 VAC	Relais	2 A.	FX1N-40MR-ES/UL
	36	24	12 - 24 VDC	Relais	2 A.	FX1N-60MR-DS
	36	24	12 - 24 VDC	Transistor	0,5 A.	FX1N-60MT-DSS
	36	24	100 - 240 VAC	Relais	2 A.	FX1N-60MR-ES/UL

2. OPBOUW van de MELSEC FX1S/FX1N BESTURINGEN

2.1 Overzicht van de basiseenheid

2.1.1 De basiseenheid MELSEC FX1S

Toelichting:

EEPROM geheugen is een "schrijf-lees" geheugen. Dit geheugen wordt met behulp van programmeersoftware beschreven of gewist. EEPROM geheugen is een niet vluchtige geheugensoort, ook bij spanningsuitval wordt de opgeslagen informatie behouden.

Interface adapter zijn voor de MELSEC FX1S in verschillende uitvoeringen ter beschikking (zie hoofdstuk 5) en wordt gebruikt voor communicatie. De interface adapter kan direct in de uitsparing aangesloten worden.

De **ingebouwde voeding** levert 24 V DC (max. belasting 400 mA) als voorziening van ingangssignalen en sensoren.

Door middel van **analoge potentiometers** kan de normale temperatuur ingesteld worden. Vanaf dat ogenblik zijn de instellingen voor dat programma opgeslagen en kunnen voor timers, impulsen of overeenkomstig benut worden.

Door middel van **digitale ingangen** worden besturingssignalen van de aangesloten schakelaars, druktoetsen of sensorschakelaars geschakeld. De toestand van de ingang kan ingeschakeld (spanning aanwezig) of uitgeschakeld (geen spanning) worden.

Op de **digitale uitgangen** kunnen we de volgende uitgangstype toepassen en aansluiten: schakelpunten en actuatoren.

2.1.2 Basiseenheid van MELSEC FX1N

Toelichting:

Door middel van LED's wordt de ingangstoestand aangeduid. Als een spanning of besturingssignaal op de ingang is, licht de LED van die ingang op.

De LED's RUN, POWER en ERROR geven de actuele **bedrijfstoestand** van de PLC weer. POWER als er een voedingsspanning is, RUN als de PLC het programma aan het uitvoeren is en bij een storing komt de ERROR LED op.

De MELSEC PLC heeft twee bedrijfstoestanden: RUN en STOP. Met de **RUN/STOP schakelaar** kan er tussen de bedrijfstoestanden gewisseld worden. In RUN toestand werkt de PLC de vooraf geprogrammeerde besturing af. In STOP toestand kan de PLC het programma niet uitvoeren, maar er kan nu wel in de PLC een programma ingevoerd worden.

De **uitgangstoestand**, of de uitgang in- of uitgeschakeld is, wordt met LED's gesignaleerd. Op de uitgang kunnen verschillende soorten signalen geschakeld worden, type of manier maakt niet uit.

2.2.1 Zo monteer ik mijn PLC

U haalt de PLC uit de verpakking

Haalt u eerst een papieren band van de PLC af, na de installatie en kabelmontage van het ventilatierooster. U beschermt het tegen metalen spaanders.

De module van de MELSEC FX1S/FX1N serie beschikt zowel over een DIN-rail montage voorziening als over bevestingsgaten ten behoeve van montage op een vlakke en gladde ondergrond.

U bevestigt de basiseenheid middels de geïntegreerde DIN-rail montage op een DINrail in een schakelkast. Let u erop, dat de PLC vast op de rail bevestigd is!

Als alternatief kunt u de PLC met behulp van schroeven op een glad of vlakke ondergrond bevestigen.

2.2.2 Wat sluit ik op mijn PLC aan?

2.2.3 Waar uw MELSEC niet tegen bestand is.

De MELSEC FX1S en FX1N serie zijn voor bijna alle industrieën en bedrijven inzetbaar. Bij inbouw van de MELSEC PLC moet de vrije ruimte rond de PLC minimaal 50mm bedragen, zodat een goede ventilatie is gewaarborgd.

Een zeer stoffige omgeving evenals agressieve gassen.

De PLC is bij overmatige vochtigheid (> 85%) evenals een omgevingstemperatuur

hoger dan 55°C niet meer in

bedrijf.

Er kan toch enige gedragsverandering ontstaan, daarom moet u het volgende in elk geval zien te vermijden bij omgang met de PLC.

Verspanende werkzaamheden in de omgeving van de besturing moeten worden vermeden, aangezien binnendringende metaalspannen de PLC kunnen beschadigen.

Zorgt u ervoor dat de PLC geen sterke vibraties en/of mechanische schokken van meer dan 2G krijgt.

Verwijder voor het in gebruik nemen de verpakkings- of beschermingsband van de ventilatie sleuven.

Om storingsinvloeden van omringende apparatuur te vermijden, moeten netspanningkabel e.d. op voldoende afstand van de PLC worden gelegd.

3. PROGRAMMERING VAN DE MELSEC FX1S/FX1N

MET MELSOFT PROGRAMMEER SOFTWARE

3.1.1 Waaruit bestaat een programma

Een programma bestaat uit een reeks instructies, deze instructies bepalen de besturing. De PLC werkt de reeks instructies volgens rangorde af. Het te maken programma moet het besturingsproces eigenlijk de instructies één voor één uitgevoerd worden. De totale programmaverwerking wordt continu herhaalt, dus een cyclische programmaverwerking ontstaat.

De bovenstaande grafiek geeft de omzetting weer van een PLC schakeling naar een ladderdiagram. In de bovenstaande tabel zijn de belangrijke operanden weergegeven met hun betekenis. Deze operanden zijn voor programmeren noodzakelijk.

Туре	Operand	Betekenis	
INGANG	Х	Ingangen van de PLC	
uitgang	Y	Jitgangen van de PLC	
TIMER	Т	Timer: realisering van tijdsafhankelijke functies	
Counter	С	Counter: realisering van telfuncties	
Merker	М	nterne hulpcontact (relais)	
CONSTANTE	К	Decimale telwaarde als rekengrootte	

Ter beschikking staande instructies kunnen grof in basisinstructies en in applicatie instructies worden ingedeeld. Bij de basis kunnen er tussen ingangs-, verbindings- en uitgangsinstructies evenals overige instructies onderscheid gemaakt worden.

Bij verbindingen met ingangen, uitgangen of merkers kunnen maar twee toestanden voorkomen: ingeschakeld (1 of waar) of uitgeschakeld (0 of niet waar). Dus kan men deze verbindingen met schakelaars of beschermingsspoelen vergelijken. De MELSEC FXfamilie kan op verschillende manieren geprogrammeerd worden. De klassieke vorm is instruction list (IL) en ladderdiagram (LD) zal hierna verder beschreven worden.

Toelichting:

De basis van de programmering is een reeks instructies Hierbij handelt de besturing de gegeven bevelen af. Een instructie kan bijv. zijn: Toets een signaal toestand op ingang X1 en wanneer deze signaal waar is, dan schakelt de uitgang Y1 in. Er wordt een naam aan een instructie toegekend, die bij de programmering in de instruction list wordt geplaatst. Een besturingsinstructie bestaat uit een stapnummer, instructie en een operand. Een **operand** bestaat uit een operand kenmerk, de wijze hoe de operand gedefinieerd is (bijv. X of Y) en een operand adres (bijv. 000 of 001). Een operand adres geeft een mogelijk onderscheiding bij meervoudig benutte (gelijke) operand kenmerken of het vastleggen van getalwaardes, bijv. voor constanten. Bij ladderdiagram programmering wordt een contactsymbool als grafisch element bij programmeren gebruikt. Het **contactsymbool** bestaat uit een instructie en een operand.

3.1.2 De basisinstructies in één oogopslag

De onderstaande tabel geeft een overzicht van de belangrijkste basisinstructies. Op de volgende bladzijden worden de instructies in detail besproken.

Instructie	Ladderdiagram	Pictogram	Betekenis
LD*	î		Begin van een bewerking
		Ė5	(NO-contact)
LDI*		-14-1	Begin van een bewerking
		É6	(NC-contact)
OUT	a a f	4	Uitvoerinstructie
	— · · · ·	F7	resultaat van een bewerking
AND*	1	-1-	EN-functie met NO-contact
		_F5	(serieschakeling)
ANI*		-11-1	EN-functie met NC-contact
		F6	(serieschakeling)
OR*	1 88 1	4 8	OF-functie met NO-contact
		uF5	(parallelschakeling)
ORI*	l or l	4/1	OF-functie met NC-contact
		uF6	(parallelschakeling)
ANB			Samenvoeginstructie: serie-
		F9	schakeling van parallelbewerkingen
ORB	—IFIF	1	Samenvoeginstructie: parallel-
		uF9	schakeling van seriebewerkingen
MPS	[]]]][]]][]]][]][]][]][]][][]][][]][][]][][Opslaan van een bewerkings-
			resultaat
MPR	티프티장김		Lezen van een bewerkings-
			resultaat
MPP	HHHK H		Lezen en wissen van een
			bewerkingsresultaat
MC		-[]-	Activeren van een gemeen-
		FO	schappelijke besturingsconditie
MCR	[MCR n]	-[]-	Resetten van een gemeen-
		FO	schappelijke besturingsconditie
SET		-[]-	Activeren van operands
5.07	×	FO	
RSI			Resetten van operands
	10 A		
PLS	[PLS 0]		Genereren van puls op opgaande
	20. 10.	[]]	
FLF		- F8	Genereren van puls op neergaande
	30	11	
ALI	[ALT D]	F8	Realisering van een flip-flop functie
NUF			(zondor function)
END	F		
	{ END }		

*) Deze instructies zijn ook als gepulste instructies verkrijgbaar, dan gebeurt uw uitvoering steeds bij opgaande of neergaande flank van een puls.

3.2 Basisinstructies

3.2.1 Ingangsinstructies in detail

Een ingangsinstructie verzorgt de programma logica met noodzakelijke informatie.

LD, LDI

Begin van een laddertak met een LD of LDI instructie. Operand kunnen ingangen, merkers, timers maar ook counters zijn.

Regel	Instructie	Adres
0	LD	X000
1	OUT	Y000
2	OUT	T0 K50
5	LD	Т0
6	OUT	M1
7	LDI	M1
8	OUT	Y001

OUT

Met een OUT-instructie kan het resultaat van één of meerdere laddertakken aangesloten worden. Naast uitgangen kunnen ook merkers, timers en counters aangesproken worden.

TIMER

Bij FX1S zijn er 64 timers en bij FX1N zijn er 256 timers tot uw beschikking. Ze onderscheiden zich door hun tijdbasis, over welke tijdconstante K de timer beschikt (zie tabel: $K50 = 50 \times 100ms = 5s$). Alle timers werken als inschakel uitgangen. Al naar de wijze van de signaal verwerking kan ook met een impuls een uitschakel uitgang gerealiseerd worden.

	Adres		Tijdbasis	Instelbare tijdbereik
FX1S	T0 - T31		100 ms	0,1 - 3276,7 s
	T32 - T62	M8028 = 0	100 ms	0,1 - 3276,7 s
		M8028 = 1	10 ms	0,01 - 327,67 s
	T63		1 ms	0,001 - 32,767 s
FX1N	T0 - T199		100 ms	0,1 - 3276,7 s
	T200 - T245		10 ms	0,01 - 327,67 s
	T246 - T249		1 ms	0,001 - 32,767 s
	T250 - T255		100 ms	0,1 - 3276,7 s

3.2.2 Contactverbindingen in detail

Verbindingsinstructies dienen ertoe dat meerdere ingangen met elkaar verbonden worden.

AND, ANI

Deze instructies worden voor serieschakelingen van contacten gebruikt, d.w.z. ingangsinstructie toegepast.

OR, ORI

Bij deze instructies worden de contacten parallel geschakeld.

Regel	Instructie	Adres
0	LD	X001
1	AND	X002
2	ANI	X003
3	OUT	M1
4	LD	X004
5	OR	X005
6	ORI	X006
7	OUT	M2
8	LD	M1
9	AND	M2
10	OUT	Y000
11	LD	M1
12	OR	M2
13	OUT	Y001
14	ANI	MO
15	OUT	Y002

Instructie	Betekenis	Symbool	GX Developer FX
AND	AND Logische EN-functie; serie- schakeling met maakcontact	\top	- F5
ΑΝΙ	AND INVERSE Logische EN-functie; serie- schakeling met verbreekcontact		- ∕- F6
OR	OR Logische OF-functie; parallel- schakeling met maakcontact] J	ЧР uF5
ORI	OR INVERSE Logische OF-functie; parallel- schakeling met verbreekcontact		4/H uF6

MERKERS
Merkers zijn interne hulprelais
en kan als tussen resultaten
worden opgeslagen. De toe-
stand van een merker houdt
dezelfde waarde in één cyclus
en wordt ter beschikking
gesteld voor de opvolgende
verbindingen. Een merker
kan in een programma vaak
willekeurig als opener of als
sluiter opgevraagd worden.

	Adres	Beschrijving
FX1S	M0 - M383	Algemene merkers
	M384 - M511	Batterij gebufferde merkers (deze merker
		behoud ook bij spanningsuitval zijn toestand)
	M8000 - M8255	Speciale merkers (merker, die bij een oproep
		een speciale functie in PLC in werking brengt)
FX1N	M0 - M383	Algemene merkers
	M384 - M1535	Batterij gebufferde merkers
	M8000 - M8255	Speciale merkers

Om gecompliceerde verbindingen eenvoudig en overzichtelijk te schakelen, zijn er speciale instructies beschikbaar. Deze tabel beschrijft of er parallel of serie geschakeld wordt.

ANB, ORB

De ANB -instructie verbindt parallelschakelingen, terwijl met de ORB -instructie twee of meer serieschakelingen parallel geschakeld kunnen worden, bijvoorbeeld een uitgang wordt toegewezen. Daardoor kunnen merkers en kostbare programmeertijd worden bespaard.

Regel	Instructie	Adres
0	LD	X000
1	ORI	X001
2	LD	X002
3	OR	X003
4	ANB	
5	OUT	Y000
6	LD	X000
7	AND	X002
8	LD	X003
9	AND	X004
10	ORB	
11	OUT	Y001

Instructie	Betekenis	Symbool	GX Developer FX
	AND-BLOCK		E
ANB	Koppelfunctie; serieschakeling	• •	FQ
	van twee parallelschakelingen		13
	OR-BLOCK		1 1 1
OKR	Koppelfunctie;parallelschakeling		uÉo
	van twee serieschakelingen		ur 3

3.2.3 Uitgangsinstructies in detail

Naast de eerst beschreven OUT instructie is er een serie met ruimere uitgang instructie. Met een SET instructie wordt de uitgang of merker na een korte inschakelpuls blijvend ingeschakeld (geset). De operand blijft zolang geset, tot deze na een RST instructie weer uitgeschakeld wordt. Met SET en RST laten zich bijvoorbeeld "zelfbehoud" of in- en uitschakelen van een aandrijving, met behulp van druktoetsen, realiseren.

Regel	Instructie	Adres
0	LD	X001
1	SET	MO
2	LD	X002
3	RST	MO

Instructie	Betekenis	Symbool	GX Developer FX
0 F T	SET		11
SEI	Activeren van een uitgang-		ES
	functie	1200	10
DOT	RESET	— —	
RSI	Deactiveren van een uitgang-		
	functie	695 <u>-</u> 50	FO

SET [] = Y, M, S RST [] = Y, M, T, C, S, D, V, Z

Wanneer SET en RST instructie een operand in dezelfde cyclus 1 zijn, heeft die in een reeks de laatste operand (in dit vb. RST) voorrang. Wanneer X001 en X002 gelijktijdig 1 zijn, dan geldt M0 = 0 (reset is dominant).

Voorbeeld:

De aandrijving is een pompbesturing voor het vullen van reservoirs. De pomp kan met een druktoets AAN en UIT handmatig gestuurd worden. Uit zekerheid wordt het uitschakelen met een verbreek druktoets uitgevoerd. Wanneer het reservoir vol is, schakelt een niveausensor de pomp uit.

Regel	Instructie	Adres
0	LD	X001
1	SET	Y000
2	LDI	X002
3	OR	X003
4	RST	Y000

COUNTER

Met een RST instructie kunnen ook werkelijke waarden van timers en counters op 0 gezet worden. De bijbehorende contacten worden nu uitgeschakeld. Bij een counter besturing op de FX1S of FX1N serie heeft u verschillende counters ter beschikking. De tabel geeft u een overzicht van programmeerbare counters.

	Adres	Beschrijving
FX1S	C0 - C15	16 bit teller (opwaarts tellen)
	C16 - C31	16 bit teller (opwaarts tellen) + batterij gebufferd,
		de telstand blijft behouden bij een spanningsuitval.
	C235 - C255	Snelle 32 bit teller, op- en afwaarts tellend,
		strekt zich uit tot externe signalen.
FX1N	C0 -C15	16 bit teller (opwaarts tellen)
	C16 - C199	16 bit teller (opwaarts tellen) + batterij gebufferd,
		de telstand blijft behouden bij een spanningsuitval.
	C200 - C219	32 bit teller, op- en afwaarts tellend
	C220 - C234	32 bit teller, op- en afwaarts tellend, de telstand
		blijft behouden bij spanningsuitval
	C235 - C255	Snelle 32 bit teller, op- en afwaarts tellend,
		strekt zich uit tot externe signalen.

Bij het onderstaande programmavoorbeeld wordt de telstand van de counter (C0) bij het inschakelen van X001 verhoogt. Wanneer de voorwaarde van 10 bereikt is, dan wordt de uitgang Y000 ingeschakeld. Met X003 kunnen C0 en Y000 gereset worden.

Regel	Instructie	Adres
0	LD	X001
1	OUT	C0 K10
4	LD	X003
5	RST	C0
7	LD	C0
8	OUT	Y000

PULS FUNCTIE

De PLS- en PLF-instructie kunnen in samenhang met merkers en digitale uitgangen benut worden. U wekt een impuls op, onafhankelijk van de duur van een opstaande ingang signaal. Dat pulssignaal staat voor de duur van het programmacyclus.

Regel	Instructie	Adres
0	LD	X000
1	PLS	MO
3	LD	MO
4	SET	Y000
5	LD	X001
6	PLF	M1
8	LD	M1
9	RST	Y000

Aan de hand van de onderstaande tijdsvolgorde diagram wordt de tijdsvolgorde van de uitvoering duidelijk.

SET [] = Y, M RST [] = Y, M

Hoofdschakeling functie

Door activeren (MC) of deactiveren (MCR) kunnen delen van het programma inof uitgeschakeld worden.

Instructie	Betekenis	Symbool	GX Developer FX
	MASTER CONTROL		
MC	Activeren van een bepaald	мс □	
	deel van het programma		FO
	MASTER CONTROL RESET		51
MCR	Deactiveren van een bepaald		
	deel van het programma		FØ

MC [] = Y, M (behalve speciale merkers)

Regel	Instructie	Adres
0	LD	X000
1	OUT	Y002
2	LD	X001
3	MC	N0 M10
6	LD	X002
7	OUT	Y003
8	LD	X003
9	MC	N1 M11
12	LD	X004
13	OUT	Y004
14	MCR	N1
16	MCR	N0
18	END	

Een Master Control instructie stelt een hoofdcontact op de verzamelrail voor, deze moet gesloten zijn, daarna wordt het volgende programmadeel afgewerkt.

Als vertakkingadres (nesting) zijn er 8 posities (N0 - N7) ter beschikking.

De MC begint met het laagste nesting-adres, de MCR met het hoogst gebruikte nestingadres.

3.2.4 Bijzondere instructie in detail

Opbouw van

verbindingsgebied

De instructies MPS, MRD en MPP dienen ertoe om het verbindingsgebied op te bouwen. Met behulp van deze instructies wordt de programma gebruik aanzienlijk gereduceerd.

De MPS en MPP instructies in de instruction list dienen voor opslaan respectievelijk lezen van de tussenuitkomst. Bij de input van een programma in een ladderdiagram worden deze instructies van de programmeersoftware automatisch ingevoegd.

Regel	Instructie	Adres
0	LD	X000
1	MPS	
2	AND	X001
3	OUT	Y000
4	MRD	
5	AND	X002
6	OUT	Y001
7	MPP	
8	AND	X003
9	OUT	Y002
10	END	

Instructie	Betekenis	Symbool	GX Developer FX
MPS	Opbergen van het resultaat van een bewerking in het stackgeheugen	-[mps]-	-{ }- F8
MRD	Lezen van het resultaat van een bewerking in het stackgeheugen		-[]- F8
MPP	Lezen van het resultaat van bewerking uit stackgeheugen + wissen van inhoud geheugen	-[MPP]-	-[]- F8

Om beter begrip en gevoel te krijgen wordt bovengenoemde instruction list nog eenmaal met een voorbeeld uitgevoerd. De operand (in voorbeeld X000) moet herhaaldelijk geprogrammeerd worden. Er ontstaat dus een groter programmaverbruik, in het bijzonder bij lange programma's en omvangrijke ladderdiagrammen.

Voorbeeld: Programma

U wordt verzocht eenmalig het voorbeeld goed te bekijken.

Re	egel	Instructie	Adres
	0	LD	X000
1.	1	MPS	
	2	AND	X001
	3	OUT	Y000
2.	4	MRD	
	5	AND	X002
3.	6	MPS	
	7	OUT	Y001
4.	8	MRD	
	9	AND	X003
	10	OUT	Y002
5.	11	MRD	
	12	AND	X004
	13	OUT	Y003
6.	14	MPP	
	15	AND	X005
	16	OUT	Y004
7.	17	MPP	
	18	AND	X006
	19	OUT	Y005
	20	END	

<u>1. MPS</u>

Het tussenresultaat (hier de status van X000) in de eerste laddertak wordt op de eerste plaats van het stackgeheugen opgeslagen.

<u>2. MRD</u>

Voor de uitvoering van de volgende instructie, wordt het tussenresultaat van de eerste plaats van het stackgeheugen opgevraagd.

<u>3. MPS</u>

Het tussenresultaat van de tweede laddertak wordt in de eerste plaats van het stackgeheugen opgeslagen. Het reeds opgeslagen tussenresultaat van de eerste laddertak wordt naar de tweede plaats in het stackgeheugen geschoven.

<u>4. MRD</u>

Voor de uitvoering van de volgende instructie wordt het tussenresultaat van de eerste regel van het stackgeheugen gelezen.

<u>5. MRD</u>

Voor de uitvoering van de volgende instructie wordt het tussenresultaat van de eerste regel van het stackgeheugen gelezen.

<u>6. MPP</u>

Voor de uitvoering van de volgende instructie wordt het tussenresultaat van de eerste regel van het stackgeheugen gelezen. De werking van de tweede laddertak wordt tevens afgesloten. Het tussenresultaat op de eerste regel van het stackgeheugen is voor de verdere loop van deze laddertak niet meer nodig en wordt gewist. Hierdoor wordt het tussenresultaat dat op de regel van het register is opgeslagen, automatisch naar de eerste regel geschoven.

<u>7. MPP</u>

Voor de uitvoering van de volgende instructie wordt het tussenresultaat op de eerste regel van het stackgeheugen opgevraagd. De werking van de tweede laddertak wordt tevens afgesloten en het stackgeheugen wordt gewist.

Lege regel

Met de NOP instructie wordt een lege regel in het programma geprogrammeerd. Op deze regel kan later in een nog niet voltooid programma een instructie worden geschreven. Tussenvoegen van NOP instructies moet met de INSERT functie worden uitgevoerd.

Regel	Instructie	Adres
0	LD	X000
1	OUT	Y000
2	LD	X001
3	AND	X002
4	OUT	Y001

In het voorbeeld wordt X001 door een NOP instructie vervangen. Door deze verandering is de logische schakeling als volgt gewijzigd.

Regel	Instructie	Adres
0	LD	X000
1	OUT	Y000
2	NOP	
3	AND	X002
4	OUT	Y001

Programma einde

Elk programma moet met een END instructie afgesloten worden. Bij programmeren via programmeersoftware wordt deze instructie automatisch ingevoegd (op grond van dit commando wordt bij geen van de voorbeelden in deze handleiding daar opgewezen). Bij verwerking van een END instructie wordt op dat punt de programmaverwerking beëindigd en daarna het volgende programmadeel, bijv. voor test doeleinden, niet meer gerespecteerd. De programmabewerking springt van dat punt in het programma terug naar stap 0.

3.3 Programmeertips

3.3.1 In- en uitschakel vertraging

Inschakel vertraging De tijdmarge die tussen het aanleggen van een signaal op een ingang en het inschakelen van bijhorende uitgang wordt verzorgt door een timer.

In het hiernaast staande voorbeeld bedraagt de vertragingstijd 1,5 s (1,5 s = 15 * 0,1 s).

Regel	Instructie	Adres
0	LD	X001
1	OUT	T0 K15
4	LD	T0
5	OUT	Y001
6	END	

De hiernaast staande tijdsvolgorde diagram verduidelijkt de functie.

Uitschakel vertraging Het voorbeeld met vertraagd inschakelen van een uitgang is ook als vertraagd uitschakelen mogelijk. In het hiernaast staande tijdvolgorde diagram is het tijdsverloop van het hiernaast staande programma afgebeeld.

Regel	Instructie	Adres
0	LD	X000
1	SET	Y000
2	LDI	X001
3	OUT	T0 K20
6	LD	T0
7	RST	Y000

3.3.2 Pulsgever

In de besturing zijn speciale merkers ter beschikking. Deze lossen zeer eenvoudige programmeeropgaven op, bijvoorbeeld aansturing van een licht voor storingsmelder. M8013 bijvoorbeeld wordt in één seconde ritme in- en uitgeschakeld. Gedetailleerde omschrijvingen van alle speciale merkers vindt u in de programmeerinstructie van de FX-serie. Wanneer andere pulsgevers of verschillende in- en uitschakeltijden gewenst worden, kan met twee timers een pulsgever gerealiseerd worden. X001 start de pulsgever. De uitgang wordt cyclisch door T2 voor één seconde ingeschakeld en voor twee seconden (T1) uitgeschakeld.

Tijdconstanten door

geïntegreerde potentiometer. In de PLC zijn twee analoge potentiometers te vinden, met deze potentiometers kunnen timerwaardes snel en zonder programmeerapparatuur veranderd worden (zie opbouw in hoofdstuk 2). De bovenste potentiometer (VR1) kan de waarde uit dataregister D8030 lezen. De waarde van D8031 wordt door onderste potentiometer VR2 opgeslagen. Om een potentiometer als normale temperatuurbron voor een tijdgever te gebruiken, wordt in het programma een register i.p.v. een constante opgegeven. De waarde in het register kan door de potentiometer van 0 tot 255 verandert worden door een gepaste positie in te nemen. Bij het voorbeeldprogramma wordt Y000 na verloop van T1 voor een bepaalde tiid T2 ingeschakeld (vertraagde impuls uitgang).

Regel	Instructie	Adres
0	LD	X001
1	ANI	T2
2	OUT	T1 K20
5	LD	T1
6	OUT	T2 K10
9	OUT	Y000

Regel	Instructie	Adres
0	LD	X001
1	OUT	T1 D8030
4	LD	T1
5	OUT	T2 D8031
8	LD	T1
9	ANI	T2
10	OUT	Y000

3.3.3 In- / uitschakelvertraging

Het voorbeeld hiernaast is een in- en uitschakelvertraging met T1 = 5s en T2 = 2,5s.

Regel	Instructie	Adres
0	LD	X000
1	OUT	T1 K50
4	LDI	X000
5	OUT	T2 K25
8	LD	T1
9	OR	Y000
10	ANI	T2
11	OUT	Y000

3.3.4 Flip-flop functie

Eenvoudige flip-flop functie (impulsschakelaar) is met behulp van de ALT-instructie met maar vier programmaregels realiseerbaar.

Regel	Instructie	Adres
0	LD	X000
1	PLS	MO
2	LD	MO
3	ALT	Y000

3.3.5 Brugschakeling

Een brugschakeling kan niet direct worden geprogrammeerd. De stroom loopt van de ene parallelle tak naar de andere parallelle tak. Brugschakelingen moeten volgens het hiernaast gestelde voorbeeld worden omgezet.

Instructie

LD

AND

OR

AND

LD

AND

OR

AND

ORB

OUT

Regel

0

1 2

3

4

5

6

7

8

9

3.3.6 Dubbel gebruik van merkers of uitgangen

De operanden mogen maar op één plaats in een programma een vastgeknoopt resultaat toegewezen krijgen. De verwerking van het programma gebeurt van boven naar beneden, dan wordt de eerste toewijzing voor M10 van de tweede toepassing overschreven.

Door modificatie van deze programmadelen komen alle ingangsverbindingen in aanmerking.

3.4 Programmering met MELSOFT programmeer software

3.4.1 Verbinding tussen PLC en de computer

3.4.2 Programmeersoftware GX Developer FX

De software GX Developer FX van de MELSOFT-serie maakt het programmeren van MELSEC FX PLC's mogelijk en biedt het gebruik onder Microsoft Windows aan.

Programma's kunnen als ladderdiagram of als instruction list geschreven worden. Bovendien kan omvangrijke commentaar toegevoegd worden. Datawisseling met de PLC kan alleen via een seriële verbinding SC-09 (zie blz. 38).

Eigenschappen in een overzicht

Met de software

- GX Developer FX kunt u:
- Programma voor de totale FX-serie maken;
- Programma in ladderdiagram of instruction list maken;
- Kiezen tussen werktuig schakelvlak, functie toetsen, beveltoetsen, of menubevelen bij het maken van een programma;
- Sneller programmeren, omdat programmeerbevelen direct beschikbaar zijn;
- Eenvoudig in Word of Excel commentaar toevoegen;

- Gemakkelijk Windows functies (knippen, kopiëren, invoegen, enz) gebruiken;
- Programma "offline" maken en testen;
- Programma vanaf de PLC CPU lezen of schrijven naar de PLC CPU;
- Toezicht houden op de PLC CPU;
- Het programma in de PC eenvoudig te debuggen met logicatest-functie (LLT);
- Optredende CPU fout onmiddellijk in de online help worden opzoeken;
- De CPU nagaan;
- Oude MEDOCprogramma direct inlezen.

Installatie van de software

GX Developer FX is voor een computer (PC) geschikt die onder Windows 95, 98 of NT 4.0 te installeren is.

GX Developer FX starten

Klik op startmenu. Onder "programma" vindt u de map "MELSEC Application". Wanneer u de cursor op deze map plaatst, wordt de snelkoppeling van GX Developer FX zichtbaar. Vervolgens kan met de linker muisknop gestart worden. Voor het installeren moet de Cd-rom met programmeer software in de computer

Met F1 is het detailleerde helpmenu beschikbaar. Hiermee wordt u door het programma begeleidt en worden bijzondere menu's en functies nader toegelicht. gestopt worden. Daarna volgt u de aanwijzingen van de installatie programma op.

Nieuw project

Een project is de bovenste hiërarchie trede in de GX Developer FX software. Wanneer u een nieuw project aanmaakt, maakt GX Developer FX eerst een register aan met alle relevante data die het PLC programma bevat. Deze data zijn programma, operanden commentaar, parameters en/of programma operanden. Geef de nodige informatie weer in de wizard, met name welke instellingen vereist zijn voor het nieuwe project.

C series	08
FXCPU	
.C Type	Lan
FX15	•
Program type	Label setting
	6 Unite
	C Use Label
Device memory data which is the	C Lise Libel +FB
 Device memory data which is the Setup project name 	same as program dala's name is cr
Device memory deta which is the Setup project name Setup project name	same as program data's name is on
Device memory data which is the Setup project name Setup project name DimerPath	same as program dela's name is cir
Device memory data which is the Setup project name IP Setup project name DriverPath CANELSEC	same as program detets name is on

Ladderdiagram programma

Voor het maken van een ladderdiagram met GX Developer FX is er een reeks instructieknoppen in de menulijst beschikbaar! Hiermee kan per deel een programma geschreven worden. Om instructies in een laddertak toe te voegen, plaatst u het cursorvakje met de muis op de juiste plek, vervolgens kan de instructie ingevoegd worden. Dubbel klikken in het cursorvakje om "enter symbol" scherm te openen en u vult "LD X001" in het tekstveld in. Vervolgens klikt u op "*OK*" en de instructie wordt dan ingevoegd (op de plek van het cursorvakje). Bij een nieuw project moet eerst een laddertak met "*shift* + *insert*" worden ingevoegd.

Wisselen tussen instruction list en ladderdiagram programmeren kan met F2 en met de afgebeelde knop in schrijfmode gebeuren.

Instruction list programma

Invoegen en zoekfuncties in de instruction list zijn op dezelfde manier uitgevoerd als bij ladderdiagram. Met de instructies invoegen gaat op dezelfde manier als bij het ladderdiagram.

Data overbrengen naar PLC CPU

Na de programmering in schrijfmode worden de nieuw aangemaakte of veranderde data grijs gekleurd. Om het programma over te brengen naar de PLC moet eerst het programma geconverteerd worden, klik hiervoor op F4. Vervolgens gaat u naar menubalk "online" dan "write to PLC", er verschijnt een nieuw scherm. Van daaruit gaat u naar *"transfer setup..."* en kiest u vervolgens de manier hoe de PC is aangesloten met de FX PLC (bijv. serieel – COM1), dan bevestigen met *"OK"*. Data overdracht stelt u vooraf veilig door de PLC in stopmode te zetten. Klik dan op *"execute"* (scherm: write to PLC). De data wordt nu overgebracht, vervolgens kan de PLC in RUN gezet worden.

4. VOORBEELDEN

UIT DE PRAKTIJK

4.1.1 Toepassing

Er zal een alarminstallatie vervaardigd worden, die eenvoudig en snel op een Mitsubishi PLC te realiseren is en met meerdere meldsensoren uitvoerbaar evenals vertraagde in- en uitschakelfuncties vertoont.

De alarminstallatie biedt de volgende functies:

- Meer aansluitmogelijkheden van meldsensoren:
- De installatie wordt pas na een vertragingstijd actief. Zolang de tijd duurt, kan het huis nog verlaten worden. Na deze tijd wordt opgeroepen of alle meldsensoren gesloten zijn;
- Een alarm wordt pas na een wachttijd doorgegeven, vervolgens kan de installatie na betreden van het huis ingeschakeld worden;
- De akoestische alarmmelding klinkt gedurende 30 seconde. Het optische signaal blijft aan tot het uitschakelen van de installatie. Bijkomend wordt aangeduid, welke sensorgroep het alarm heeft veroorzaakt.

4.1.2 Functiebeschrijving

De bediening van de installatie kan als volgt uitgevoerd zijn. Met een sleutelschakelaar (S1) wordt de installatie na een vertragingstijd van 20 seconde ingeschakeld. Bij onderbreking van de sensor wordt na een verdere wachttijd van 10 seconde een claxon en een lampje (optische aanduiding) ingeschakeld. Door het alarm uit te schakelen met S1 wordt het gereset.

4.1.3 I/O adressen en elektrische aansluiting van de besturing

Aansluitlijst

Dit overzicht bevat de I/O adressen evenals merkers en timers. Gedurende de tijd dat de ingang oon alarmtoostand	Functie	Adres	Kenmerk	Toevoeging	
	INGANGEN				
	Installatie "scherp" (sleutelschak. 1)	X001	S1	X001 bedient = 1 (AAN)	
bevat. volgt er een	Sensorgroep 1	X002	S11, S12	X002 bedient = 0 (ALARM)	
akoestische en optische	Sensorgroep 2	X003	S21, S22	X003 bedient = 0 (ALARM)	
alarmuitgang door een sensor	Sensorgroep 3	X004	S31, S32	X004 bedient = 0 (ALARM)	
die op de uitgang is	UITGANGEN		-		
aangesloten. Met behulp van	Aanduiding installatie "scherp"	Y000	HO	Y000 set = 1 (scherp zetten)	
timers kan het scherp gesteld	Akoestische alarm (claxon)	Y001	E1	Y001 set = 1	
alarmmelding verzorgt.	Optische alarm aanduiding	Y002	H1	Y002 set = 1	
	Aanduiding sensorgroep 1	Y003	H2	Y003 set = 1	
	Aanduiding sensorgroep 2	Y004	H3	Y004 set = 1	
	Aanduiding sensorgroep 3	Y005	H4	Y005 set = 1	
	MERKER				
	Alarm geheugen	M1		M1 set = ALARM	
	TIMER				
	Inschakelvertrager Alarminstallatie	TO		20s	
	Inschakelvertrager Alarm slaan	T1		10s	
	Schakeltiid van claxon	T2		305	

Eenvoudig en meer zekerheid

Aansluiting van de PLC

Deze afbeelding geeft de externe bedrading bij FX1S-14MR-ES/UL weer met alle componenten. In het overzicht zijn twee identieke sensoren serie geschakeld.

4.1.4 Programma voorbeeld

Regel	Instructie	Adres	Opmerking
Alarmins	stallatie op sch	nerp "zetten	"
0	LD	X001	Installatie inschakelen
1	OUT	T0 K200	Inschakelvert. A.Instal.
4	LD	T0	Inschakelvert. A.Instal.
5	OUT	Y000	Installatie "scherp"
Alarmme	elding via sens	oren	
6	LDI	X002	Sensorgroep 1
7	AND	Y000	Installatie "scherp"
8	SET	M1	Alarmgeheugen
9	SET	Y003	Aanduiding sensorgr.1
10	LDI	X003	Sensorgroep 2
11	AND	Y000	Installatie "scherp"
12	SET	M1	Alarmgeheugen
13	SET	Y004	Aanduiding sensorgr.2
14	LDI	X004	Sensorgroep 3
15	AND	Y000	Installatie "scherp"
16	SET	M1	Alarmgeheugen
17	SET	Y005	Aanduiding sensorgr.3
Inschake	elen van alarm	installatie (d	jeheugen)
18	LD	M1	Alarmgeheugen
19	OUT	T1 K100	Inschakelvert. Alarm
22	LD	T1	Inschakelvert. Alarm
23	OUT	T2 K300	Schakeltijd claxon
Claxon			
26	LD	T1	Inschakelvert. Alarm
27	ANI	T2	Schakeltijd claxon
28	OUT	Y001	Claxon AAN
Alarm op	otische meldin	g	-
29	LD	T1	Inschakelvert. Alarm
30	OUT	Y002	Optische alarm aand.
Resetten van alle uitgangen en merker			
31	LDI	X001	Installatie uitschakelen
32	RST	Y000	Installatie "scherp"
33	RST	Y001	Claxon UIT
34	RST	Y002	Aanduiding alarm UIT
35	RST	Y003	Aand. sensor 1 UIT
36	RST	Y004	Aand. sensor 2 UIT
37	RST	Y005	Aand. sensor 3 UIT
38	RST	M1	Geen Alarm
	END		

4.2 Besturing van een roldeur

4.2.1 Toepassing

Het openen respectievelijk sluiten van de deur kan vanaf buiten of binnen. Door een bijkomende tijdbesturing gebeurt de sluiting van de deur automatisch. De bedrijfstoestand wordt door een waarschuwingslampje aangegeven. Een lichtstraal erkent een hindernis onder de deur. In dit geval wordt de deur dan automatisch geopend. Door een noodstop schakelaar kan de deur in zijn actuele positie gestopt worden.

4.2.2 Functiebeschrijving

Door de sleutelschakelaar (S1) gebeurt het openen van de deur vanuit buiten en het sluiten door druktoets S4.

Van binnenuit in de hal gebeurt de besturing van de deur door druktoetsen S0 (deur open) en S3 (deur dicht).

Door de noodstop schakelaar (S6) stopt de deur in zijn actuele positie.

De deurbesturing beschikt bovendien over een beschermingsmaatregel dat tijdens het sluiten van de deur een lichtstraal (S7) bewaakt. Deze lichtstraal herkent eventuele hindernissen onder de roldeur en brengt de roldeur tot stilstand, vervolgens wordt de roldeur onmiddellijk heropend. Het uitschakelen van de motoren in beide eindposities van de roldeur gebeurt door de eindschakelaars S2 (deur open) en S5 (deur dicht). De toestand "deur in beweging" en "deur in niet gedefinieerde positie" wordt door een knipperende waarschuwingslampje aangegeven.

4.2.3 I/O adressen en elektrische aansluiting van de besturing

Aansluitlijst	Functio	Adres	Kenmerk	Toevoeging	
Uit de aansluitlijst wordt		Adres	Kennerk	Toevoeging	
duidelijk, met weik	MOANOEN				
bedrijfsmiddel de in- en	Drukschakelaar NOODSTOP	X000	S6	X000 bedient = 0 (stop)	
uitgangen de MELSEC FX1S	Sleutelschakel. 'deur open' (buiten)	X001	S1	X001 bedient = 1 (open)	
en FX1N besturing	Druktoets 'deur open' (binnen)	X002	SO	X002 bedient = 1 (open)	
geschakeld zijn en welke	Eindschakelaar 'deur geopend'	X003	S2	X003 bedient = 0 (boven)	
ziin Verder kan men	Druktoets 'deur sluiten' (binnen)	X004	S3	X004 bedient = 1 (dicht)	
onderscheiden welke interne	Druktoets 'deur sluiten' (buiten)	X005	S4	X005 bedient = 1 (dicht)	
operanden voorhanden zijn en	Eindschakelaar 'deur gesloten'	X006	S5	X006 bedient = 0 (beneden)	
welke voor het besturings-	Foto-elektrische beveiliging	X007	S7	X007 contact = 1 (start timer T0)	
verloop ingezet worden.	UITGANGEN				
De interne speciale merker	Waarschuwingslamp	Y000	H1	Y000 set = 1 (lamp aan)	
M8013 stelt een 1 seconde timer (1 Hz.) ter beschikking.	Motor "OPGAAND"	Y001	K1	Y001 set = 1 (motor linksom)	
	Motor "NEERGAAND"	Y002	K2	Y002 set = 1 (motor rechtsom)	
	MERKER				
Aansluiting van de PLC	Hulpmerker 'deur open'	M1		M1 set = 1 (deur gaat omhoog)	
De onderstaande grafiek	Hulpmerker 'deur dicht'	M2		M2 set = 1 (deur gaat omlaag)	
verduidelijkt de externe	Flankmerker 'deur open'	M100		M100 set = 1	
bedrading van de schakeling	Flankmerker 'deur dicht'	M200		M200 set = 1	
bij een FX1S-14MR-ES/UL	SPECIALE MERKER				
zonder motorschakeling.	Timerpuls	M8013		set = 1 sec. (1Hz.)	
	TIMER				
	-				

4.2.4 Programma voorbeeld

Regel	Instructie	Adres	Opmerking
Flankbe	sturing drukto	etsen deur	open en dicht
0	LD	X001	S1 (buiten) deur open
1	OR	X002	S0 (binnen) deur open
2	PLS	M100	Flankmerker open
4	LD	M100	Flankmerker open
5	ANI	M2	Hulpmerker deur dicht
6	SET	M1	Hulpmerker deur open
7	LD	X004	S3 (binnen) deur dicht
8	OR	X005	S4 (binnen) deur dicht
9	PLS	M200	Flankmerker dicht
11	LD	M200	Flankmerker dicht
12	ANI	M1	Hulpmerker deur open
13	SET	M2	Hulpmerker deur dicht
Automat	isch sluiten na	a 20sec.	
14	LDI	X003	Deur is geopend
15	OUT	T0 K200	Timer 20 seconde
18	LD	T0	Timer 20 seconde
19	SET	M2	Hulpmerker deur dicht
NOODST	OP		
20	LDI	X000	NOODSTOP
21	RST	M1	Hulpmerker deur open
22	RST	M2	Hulpmerker deur dicht
Lichtstra	aal voor hinder	nis herkenr	ning
23	LD	X007	Foto-elektrisch
24	AND	M2	Hulpmerker deur dicht
25	RST	M2	Hulpmerker deur dicht
26	SET	M1	Hulpmerker deur open
Motor af	schakeling do	or eindscha	kelaar S2 of S5
27	LDI	X003	Deur is geopend
28	RST	M1	Hulpmerker deur open
29	LDI	X006	Deur is gesloten
30	RST	M2	Hulpmerker deur dicht
Motor be	esturing		
31	LD	M1	Hulpmerker deur open
32	OUT	Y001	Motor "OPGAAND"
33	LD	M2	Hulpmerker deur dicht
34	OUT	Y002	Motor "NEERGAAND"
Deur in l	beweging of in	onbekende	positie
35	LD	X003	Deur is geopend
36	AND	X006	Deur is gesloten
37	AND	M8013	Timerpuls 1 seconde
38	OUT	Y000	Waarschuwingslamp H1
1	END		

4.3 Regeling van gelijkstroommotoren

4.3.1 Toepassing

Door een pulsmodulatie (PWM) kan de gemiddelde waarde van de spanning veranderd worden. Dat wordt in dit voorbeeld benut, om het toerental, respectievelijk ankerspanning, van een gelijkstroom motor geleidelijk te veranderen. Dit voorbeeld kan eveneens het dimmen van een lichtbron gebruikt worden.

4.3.2 Functiebeschrijving

Door een PWM kan het toerental van een 24V-motor in standen van 0, 10, 20 ...100% veranderd worden. Daarbij wordt op uitgang Y000 van de PLC een puls afgegeven en is de omvang veranderbaar is. Door een variabele pulsbreedte verandert de gemiddelde waarde van de uitgangsspanning UY0 in standen van 0V tot 24V. De waarde van 0V wordt bereikt als S1 ingeschakeld wordt.

De PWM is bij FX1S en FX1N PLC op de uitgangen Y000 en Y001 mogelijk. Wanneer de PWM ingeschakeld wordt, moet de besturing met transistoruitgangen zijn uitgevoerd. Mogelijke uitgangfrequentie heeft een bereik tussen 1Hz. en 100 kHz. In dit voorbeeld wordt een vaste frequentie van 100 Hz. en een variabele pulsbreedte gebruikt, om de gemiddelde waarde van de uitgangsspanning te laten variëren. Voor de programmering biedt de PLC een speciale PWMinstructie (zie afbeelding).

De PWM instructie wordt uitgevoerd zodra de merker M0 een logische 1 is.

- Op de eerste plaats wordt D0, de variabele pulsbreedte in, ms afgelegd (dit geval 1, 2... 10).
- Op de tweede plaats wordt de periodetijd T in ms afgelegd (in dit geval: constante K10; K = 10 ms, f = 1 / K = 100 Hz.).
- Op de derde plaats wordt de uitgang van de puls gedefinieerd (Y000).

Let op dat PWM-instructie maar eenmalig in het programma gebruikt wordt, de uitgangsstroom tenminste 200 mA groot moet zijn en D0 bereik tussen 1 en 32767 ligt. In de onderstaande grafiek is het automatisch optrekken van de motor afgebeeld. Om het mechaniek te ontzien, is er een tweetal stappen per tijdseenheid (normaal gesproken zo klein mogelijk) gekozen. Met druktoets S0 wordt de motor ingeschakeld en kan druktoets S1 kan elk moment weer uitgeschakeld worden.

- 48 -

4.3.3 I/O adressen en elektrische aansluiting

Aansluitlijst I/O

Aan de hand van deze I/O tabel wordt het duidelijk, met welke bedieningscontact een in- en uitgang van de besturing geschakeld wordt en welke binnenin functies zijn gebruikt.

Hulpschakeling

Om te garanderen dat een ingeschakelde toestand D0 altijd tussen 1 en 32767 (ms) ligt, wordt een pulsteller C0 opgewaardeerd (overeenstemmend met de afbeelding). Is de pulsteller kleiner of gelijk aan 1, wordt de pulsbreedte D0 op 1 geset. Is de pulsteller groter dan 1, wordt de gemeten waarde (measure value) van C0 voor de pulsbreedte van D0 gebruikt.

Aansluiting van de PLC

Deze afbeelding verduidelijkt de externe bedrading van de schakeling bij een FX1S -14MT-DDS.

Functie	Adres	Kenmerk	Toevoeging
INGANGEN			
Drukknop motor AAN	X000	SO	X000 bedient = 1 (AAN)
Drukknop motor UIT	X001	S1	X001 bedient = 0 (UIT)
UITGANGEN			
Motor	Y000	MO	Y000 set = 1 (motor aan)
COUNTER			
Pulsteller PWZ	M1		Telwaarde = 10
MERKER			
Installatie ingeschakeld	MO		M0 set = 1
Timerpuls	M8013		set = 1 seconde (1Hz.)
DATA			
Pulsbreedte	D0		

4.3.4 Programma voorbeeld

Regel	Instructie	Adres	Opmerking
Merker o	m installatie in	te schakeler	1
0	LD	X000	Drukknop AAN
1	OR	MO	Instal. Ingeschakeld
2	AND	X001	Drukknop UIT
3	OUT	MO	Instal. Ingeschakeld
Telling va	an de pulsen		
4	LD	MO	Instal. Ingeschakeld
5	LD	M8013	Timerpuls 1 seconde
6	OR	C0	Telwaarde bereikt
7	ANB		AND-blok
8	OUT	C0 K10	PWZ-telwaarde = 10
Pulsmodulatie (PWM) van Y000			
11	LD	MO	Instal. Ingeschakeld
12	MPS		Resultaat schrijven
13	AND <=	C0 K1	PWZ =< 1
18	MOV	K1 D0	Pulsbreedte = 1
23	MRD		Resultaat lezen
24	AND >	C0 K1	PWZ>1
29	MOV	C0 D0	Gem. PWZ = pulsbr.
34	MPP		Resultaat lezen/wissen
35	PWM	D0 K10 Y0	Puls op motor
Resetten van PWZ en pulsbreedte			
42	LDI	MO	Instal. Uitgeschakeld
43	RST	C0	PWZ reset
45	RST	D0	Pulsbreedte reset
	END		

4.4 Sproeiinstallatie

4.4.1 Toepassing

In de volgende rangorde wordt een sproeiinstallatie gestuurd, die gelijkmatige besproeiing in een kas overneemt. Daar de effectiviteit van de plantenproductie van de bewatering factor afhangt, wordt deze voortgang met een FX1S geautomatiseerd.

... hier lekker

water!!!

4.4.2 Functiebeschrijving

De sleutelschakelaar S0 is belast met in- en uitschakelen van de installatie. Met behulp van schakelaar S1 kan er gekozen worden tussen handmatige en automatische bediening. Wordt "automatisch" ingeschakeld, wordt eerst de positie van de sproeier gecontroleerd. Is de eindschakelaar "punt A" niet aangeroepen, dan wordt de sproeier daar naar toe verplaatst (uitgangspositie).

In "handmatig" bedrijf kan de sproeier door drukknop S2 voorwaarts en door drukknop S3 achterwaarts verplaatst worden (bijvoorbeeld bij onderhoud en reparatie). Door de ingebouwde eindschakelaars (S4 en S5) wordt de motor zowel bij voorwaarts als bij achterwaarts gestopt. Een meldingslampje H1 geeft de bedrijfstoestand weer:

- H1 continu licht =
- automatisch; H1 knipper licht (1 Hz) =

handmatig. In automatisch bedrijf wordt door drukknop S6 (auto/start) de sproeiinstallatie gestart. De sproeier verplaatst dan tweemaal automatisch van uitgangspositie. De besproeiingspomp moet eerst lopen, wanneer het ventiel geopend wordt.

4.4.3 I/O adressen en elektrische aansluiting

Aansluitlijst I/O

Aan de hand van de I/O tabel wordt het duidelijk, met welk bedieningscontact een in- en uitgang van de besturing geschakeld wordt en welke functies binnen de installatie zijn gebruikt.

Aansluiting van de PLC Deze afbeelding verduidelijkt de externe bedrading van de schakeling bij een FX1S -14MR-ES/UL.

			-
Functie	Adres	Kenmerk	loevoeging
INGANGEN			
Sleutelschakelaar AAN/UIT	X000	SO	X000 bedient = 1
Schakelaar HAND/AUTO	X001	S1	X001 bedient = 1
Drukknop moment "VOOR"	X002	S2	X002 bedient = 1
Drukknop moment "TERUG"	X003	S3	X003 bedient = 1
Eindschakelaar punt A	X004	S4	X004 bedient = 0
Eindschakelaar punt B	X005	S5	X005 bedient = 0
Drukknop AUTO/START	X006	S6	X006 bedient = 1
UITGANGEN			
Pomp (relais K0)	Y000	K0	Y000 set = 1
Motor voorwaarts (relais K1)	Y001	K1	Y001 set = 1
Motor achterwaarts (relais K2)	Y002	K2	Y002 set = 1
Meldingslampje	Y003	H1	Y003 set = 1
Ventiel	Y004	Y1	Y004 set = 1
COUNTER			
2x voor- en terugteller	CO		Telwaarde = 2
MERKER			
Installatie ingeschakeld	MO		M0 set = 1
Automatische bediening loopt	M1		M1 set = 1
Automatisch bedrijf	M2		M2 set = 1
Handmatig bedrijf	M3		M3 set = 1
Installatie uitgeschakeld	M4		M4 set = 1
Timerpuls	M8013		set = 1 seconde (1Hz.)

4.4.4 Programmavoorbeeld

Regel	Instructie	Adres	Opmerking
Vaststell	en v/d installati	e toestand (auto, hand, in, uit)
0	LD	X000	Sleutelschakelaar AAN
1	OUT	MO	Instal. Ingeschakeld
2	LDI	MO	Instal. Ingeschakeld
3	OUT	M4	Instal. uitgeschakeld
4	LD	X001	Schakelaar "hand/auto"
5	OUT	M2	Automatisch bedrijf
6	LDI	M2	Automatisch bedrijf
7	OUT	M3	Handmatig bedrijf
Automat.	Sproeiing star	ten met drul	kknop "Auto/Start"
8	LD	MO	Instal. Ingeschakeld
9	AND	M2	Automatisch bedrijf
10	AND	X006	Drukknop "Auto/Start"
11	SET	M1	Automatisch besproei.
Resetten	automatische l	besproeiing	
12	LD	MO	Instal. Ingeschakeld
13	AND	C0	Counterwaarde
14	OR	M4	Instal. uitgeschakeld
15	OR	M3	Handmatig bedrijf
16	RST	M1	Automatisch besproei.
17	RST	C0	Reset counter
2x voor-	en terugteller		
19	LD	MO	Instal. Ingeschakeld
20	AND	M2	Automatisch bedrijf
21	ANDF	X004	Eindschakelaar A
23	OUT	C0 K2	Counter (waarde = 2)
Meldings	lampje: continu	ı = Auto, kn	ipperend = Hand
26	LD	MO	Instal. Ingeschakeld
27	LD	M3	Handmatig bedrijf
28	AND	M8013	Timerpuls 1sec.
29	OR	M2	Automatisch bedrijf
30	ANB		AND-blok
31	OUT	Y003	Meldingslampje
Pomp en	ventiel		
32	LD	MO	Instal. Ingeschakeld
33	AND	M2	Automatisch bedrijf
34	LD	Y001	Motor "voorwaarts"
35	OR	Y002	Motor "achterwaarts"
36	ANB		AND-blok
37	MPS		Resultaat schrijven
38	AND	Y004	Ventiel openen
39	OUT	Y000	Pomp AAN
40	MPP		Resultaat lezen/wissen
41	OUT	Y004	Ventiel openen

Regel	Instructie	Adres	Opmerking
Start mot	tor "voorwaarts	"	
42	LD	M2	Automatisch bedrijf
43	AND	M1	Automatisch besproei.
44	LD	M3	Handmatig bedrijf
45	AND	X002	Drukknop "hand voor"
46	ORB		OR-blok
47	AND	MO	Instal. Ingeschakeld
48	AND	X005	Eindschakelaar B
49	ANI	Y002	Motor "achterwaarts"
50	SET	Y001	Motor "voorwaarts"
Stop mot	tor "voorwaarts	"	
51	LDI	X005	Eindschakelaar B
52	OR	M4	Instal. uitgeschakeld
53	LD	MO	Instal. Ingeschakeld
54	AND	M3	Handmatig bedrijf
55	ANDF	X002	Drukknop "hand voor"
57	ORB		OR-blok
58	RST	Y001	Motor "voorwaarts"
Start mot	tor "achterwaar	ts"	
59	LD	M2	Automatisch bedrijf
60	AND	M1	Automatisch besproei.
61	LD	M3	Handmatig bedrijf
62	AND	X003	Drukknop "hand terug"
63	ORB		OR-blok
64	AND	MO	Instal. Ingeschakeld
65	AND	X004	Eindschakelaar A
66	LDP	MO	Instal. Ingeschakeld
68	AND	X004	Eindschakelaar A
69	AND	X005	Eindschakelaar B
70	ORB		OR-blok
71	ANI	Y001	Motor "voorwaarts"
72	SET	Y002	Motor "achterwaarts"
Stop motor "achterwaarts"			
73	LDI	X004	Eindschakelaar A
74	OR	M4	Instal. uitgeschakeld
75	LD	MO	Instal. Ingeschakeld
76	AND	M3	Handmatig bedrijf
77	ANDF	X003	Drukknop "hand terug"
79	ORB		OR-blok
80	RST	Y002	Motor "achterwaarts"
	END		

5. UITBREIDINGSMOGELIJKHEDEN

5.1 Uitbreidingsmodule en eenheden

5.1.1 Interface - en communicatie adapter

Voor de FX1S en FX1N PLC bestaat er een reeks verschillende interface- en functie adapters ter beschikking, die communicatie met externe "wereld" mogelijk maakt via RS232C-, RS422of RS485-interfaces. Verder is er een display module FX1N-5DM ter beschikking, dat status uitleest en wijzigingen in de PLC geprogrammeerde data evenals de weergave en instelling van de real time clock mogelijk maakt. Adapters en displaymodule worden direct, in de daarvoor bestemde plug-in plaats, in de PLC aangesloten.

5.1.2 Uitbreidings- en speciale modules voor FX1N

De FX1N basiseenheid is uit te breiden tot 128 digitale inen uitgangen, hiervoor staan verschillende modulaire en compacte uitbreidingsmodulen ter beschikking. Aanvullend bij FX1N basiseenheden en uitbreidingsmodulen staan de speciale modulen ter beschikking voor verdere vergroting van een PLC systeem. De volgende modulen zijn beschikbaar:

- Analoog-Digitaal;
- Digitaal-Analoog;
- Temperatuur regelmodule;
- High Speed Counter;
- Positioneringmodule;
- Communicatiemodule;
- Netwerkmodule.

5.2 Communicatie mogelijkheden

5.2.1 Eenvoudige datanet door middel van seriële verbindingen

Met behulp van communicatie adapter zorgen verschillende communicatiemogelijkheden voor eenvoudige en efficiënte oplossingen, zowel met FX1S als met FX1N realiseerbaar.

RS422 interface

Naast de huidige RS422 interface kan een andere RS422 interface, om aansluiting van extra bediening- en aanduidingveld, erbij gevoegd worden.

RS232 interface

De RS232 interface maakt directe aansluitingen van externe printers, barcodelezers, Personal Computer (PC), enz mogelijk.

RS485 interface

Door een RS485 interface kunnen 8 FX1S / FX1N PLC's met elkaar verbonden worden. De maximale overdrachtafstand is 500m. Als hoger station kan een FX2N PLC of een PC dienen. Typische toepassing zijn Peer to peer of 1:n Multidrop netwerk. Ook een eenvoudige parallelverbinding, bij twee besturingen die met elkaar communiceren, is mogelijk.

Aansluiting apparatuur via RS422

5.2.2 De FX1N opent de deur naar grotere wereld van netwerken

Speciale communicatie modulen maken mogelijk dat integratie van de FX1N in verschillende netwerken.

CC-Link

Een open (industrieel) netwerk voor communicatie en I/Oniveau bevat functies zoals real time clock en verdeelde intelligentie. Tevens kunnen modulen van andere fabrikanten geïntegreerd worden. Het onderstaande overzicht geeft enige mogelijke configuraties weer uit een groot aantal mogelijkheden. Verdere informatie staat in een technische catalogus van de FX1S / FX1N / FX2N-serie.

Profibus/DP

Sensoren en actuatoren van verschillende fabrikanten laten zich snel en eenvoudig op een MELSEC PLC aansluiten. Daarbij bedraagt de communicatiesnelheid van 1,5 tot 12 Mbaud.

MELSEC I/O-Link

Decentrale moduleverdeling in de machine. Ook het aansluiten van externe apparatuur is mogelijk. Communicatie geschiedt via een extern tweedraads netwerk.

AS-Interface

Internationale standaard voor het laagste veldbusniveau. Hiermee kunnen standaard sensoren en actuatoren via een eenvoudig tweedraads netwerk communiceren.

Devicenet

Goedkoop CAN gebaseerd communicatienetwerk. Storingstolerantie netwerkstructuur waarin snel en eenvoudig producten van andere fabrikanten te integreren zijn.

5.3 Aanwijzing en instelling via HMI

HMI-bedieningspanelen voor communicatie tussen mens en machine.

Met de bedieningspanelen van Mitsubishi Electric wordt voor de gebruiker eenvoudig en flexibel "Human-Machine-Interface" met MELSEC FXserie mogelijk gemaakt. HMIpanelen geeft de transactie van functieverloop van een installatie weer. Alle apparatuur maakt de controle en wijzigingen van alle PLC specifieke data mogelijk, zoals instel- en gemeten waarden van timers, counters, dataregisters en besturingsinstructies.

HMI-panelen zijn in tekst en/of grafische uitvoering verkrijgbaar. Vrij programmeerbare functietoetsen of display weergave, respectievelijk indeling behoren tot het bedieningscomfort. Programmering en configuratie gebeurt eenvoudig en bedieningsvriendelijk op een Windows-PC. De communicatie van het HMI-paneel met de FX1S en FX1N gebeurt via de programmeerpoort van de PLC door middel van bijbehorende kabels. Er is geen extra module om een verbinding met de PLC te maken.

Alle apparatuur is voor een directe inbouw in een schakelkast of voor een adapter, respectievelijk bedieningspanelen. Door de beschermingsklasse IP65 (en hoger) blijft de HMI zelf tijdens de inzet van bedieningen absoluut gebruikszeker. De onderstaande tabel bevat een samenvatting van belangrijke bedieningspanelen. Een compacte overzicht en verdere details zijn in technische HMI catalogus te vinden.

> HMI-paneel (bijv. GOT-serie)

Weergave Aanduiding **Display* Opbouw**** Functietoetsen Serie Type Tekst FX-10 DU-E LCD^a 16x2 4 (+ nummerieke veld) FX 8 mm LCD^a FX-10 DM-E 56 x 11 mm 16x2 (80x16) F930GOT-BWD-E STN, 2 kleuren 15x5 (240x80) 117 x 42 mm max.50 touch-keys GOT-serie F940GOT-LBD-H-E LCD mono 115 x 86 mm 40x15 (320x240) max.240 touch-keys Tekst F940GOT-LWD-E LCD mono^a 115 x 86 mm 40x15 (320x240) max.240 touch-keys F940GOT-SWD-E STN, 8 kleuren^a 115 x 86 mm 40x15 (320x240) max.240 touch-kevs en A960GOT-LBA LCD mono 211 x 158 mm 160x60 (640x400) arafisch max.1200 touch-keys A970GOT-SBA STN, 8 kleuren 211 x 158 mm 160x60 (640x480) max.1200 touch-keys A975GOT-TBA TFT, 256 kleuren 211 x 158 mm 160x60 (640x480) max.1200 touch-keys E50 LCD, zwart/wit^a 56 x 10 mm 16x2 4 20x2 F-serie Tekst E100 LCD, zwart/wit^a 73 x 11 mm 4 E150 LCD, zwart/wit^a 73 x 11 mm 20x2 6 E200 LCD, zwart/wit^a 20x4 70 x 21 mm E300 LCD, zwart/wit^a 127 x 34 mm 20x4 / 40x8 (240x64) 8 / max. 128 (optioneel) E600 LCD, zwart/wit^a 120 x 64 mm 20x8 / 40x16 (240x128) 16 / max. 128 (optioneel) Tekst en grafisch E700 LCD, 256 kleuren^a 115 x 86 mm 40x30 (320x240) 16 / max. 128 (optioneel) E900T LCD-TFT, 256 kleuren^a 211 x 158 mm 80x60 (640x480) 22 / max. 128 (optioneel)

*) Display afmeting (Breedte x Hoogte).

**) Opbouw van het display: karakters x regels (resolutie - in pixel).

^a) Achtergrondverlichting bij de LCD-scherm

Geïntegreerde positioneringsbesturing

Met behulp van geïntegreerde positioneringinstructies van de FX1S en FX1N-serie laten stap- en servomotoren zich op eenvoudige wijze aansturen. Er is geen speciale aanvullende apparatuur nodig, met behulp van de FX1S / FX1N kan snel een economisch en efficiënt positioneringsysteem opgebouwd worden.

Bijzonderheden

Speciale positioneringsinstructies maken alle noodzakelijke positioneringfuncties mogelijk. Twee assen kunnen onafhankelijk van elkaar, enkel op een basiseenheid op de uitgangen Y000 en Y001 aangestuurd worden.

Beide assen kunnen elk tot 100 Hz aangestuurd worden.

De positioneringinstructies staan in een gemakkelijke programmeerhandleiding van de FX-serie, bijvoorbeeld bij GX Developer FX zijn deze instructies beschikbaar:

- ZRN Nulpunt terugpositie;
 DRVI
- Relatieve positionering;
- DRVA
- Absolute positionering;PLSV
- Variabele snelheid;
- ABS Absolute waarde lezen.

Een typische toepassing is bijvoorbeeld een vaste afzaagmaat, de aansturing van de band gebeurt door een FX1S of FX1N-CPU.

Notities

Trefwoordenlijst

A ansluiting		Ingangsignaal		PC aansluiten	38
Computer (PC)	38	Specificatie	12	PLC	
Voedingsspanning	19	Verwerking	9	Definitie	8
Actuatoren	8	Ingangsinstructies	24	FX1N basiseenheid	17
Alarminstallatie	42	Ingang verwerking	8	FX1S basiseenheid	16
ALT instructie	36	Ingangsvertraging (tijd)	12,13	Opbouw	15
Analoog signaal	9	Ingebouwde voeding	16	PLS, PLF instructie	29
ANB instructie	26	Inschakelvertraging	34	Positionering	61
AND, ANI instructie	25	Installeren		Potentiometer	
AS-interface	59	Communicatie		Intern	16,17
Assortiment PLC	10,14	adapter	58	Tijdconstante	35
		PLC aansluiten	19	Praktijk voorbeelden	41
B asisinstructies	23	PLC monteren	18	Printer aansluiten	58
Basis van de PLC	5	Instructies		Profibus/DP	59
Bedieningspanelen	60	MELSEC FX	20	Programma einde	33
Bedrijfstoestand	17	Software	40	Programma	
Besturingsinstructie	22	Oogopslag	23	verwerking	22
Binaire signaal	9	In-/uitschakelvertraging	36	Programmeerkabel	38
Brugschakeling	37	I/O-Link (MELSEC)	59	Programmeersoftware	39
				Programmering FX	21
C C-Link	59	Ladderdiagram		Pulsgever	35
Contactverbinding	25	Basis	22	Pulsuitgang	61
Communicatie		Software	40	Puls functie	29
Adapter	56	Symbool	23-33		
Definitie	8	LD, LDI instructie	24	R elais uitgang	13
Extern	58	Lege regel	33	Roldeur besturing	45
Communicatie-				RST instructie	27
mogelijkheden	58	MC, MCR instructie	30	RS232,RS422,RS485	58
Counter	28	Merker	25	Run/Stop schakelaar	17
		Montage	18		
Data overbrenging		Motorregeling	48	Schakelstroom	14
PLC-PC (software)	40	MPS, MRD, MPP		Servo aansturing	61
Seriële verbinding	58	instructie	31	SET instructie	27
Devicenet	59			Signaal verwerking	9
Digitale in- / uitgangen	16,17	N etwerken	59	Software	39
Dubbele gebruik	37	NOP instructie	33	Speciale module	57
				Sproeiinstallatie	51
END instructie	33	O pbouw MELSEC FX	15	Status aanduiding	12,13
		Operand	22	Systeem assortiment	10,14
Flip-Flop functie	36	Opto-coupler	8		
FX familie	11	OR, ORI instructie	25	Timer	24
		ORB instructie	26	Transistor uitgang	13
Galvanische scheiding	8,12,13	OUT instructie	24	Type aanduiding	11
Gelijkstroommotor	48				
GX Developer	39			U itbreidingsmodules	57
				Uitbreidingsmogelijk-	
HMI	60			heden	55
				Uitgangsignaal	
				Specificatie	13
				Verwerking	9
				Uitgang verwerking	8
				Uitgangsinstructies	27
				Uitschakelvertraging	34

31 11,14

Verbindingen (LD) Voedingsspanning

Onze producten zijn te verkrijgen bij:

NEDERLAND

Technische Unie	www.tu.nl
Solar	www.solar.nl
Ehrbecker Schiefelbusch	www.ehrbecker-schiefelbusch.nl

BELGIË

www.emac.be
www.elektro-coma.be
www.breva.be

Algemeen www.koningenhartman.com

Nederland	België
Haarlerbergweg 21e-23e	Woluwelaan 31
1101CH Amsterdam	B-1800 Vilvoorde
0031 20 587 6830	0032 2257 0200